741 research outputs found

    Influence of interface structure on electronic properties and Schottky barriers in Fe/GaAs magnetic junctions

    Full text link
    The electronic and magnetic properties of Fe/GaAs(001) magnetic junctions are investigated using first-principles density-functional calculations. Abrupt and intermixed interfaces are considered, and the dependence of charge transfer, magnetization profiles, Schottky barrier heights, and spin polarization of densities of states on interface structure is studied. With As-termination, an abrupt interface with Fe is favored, while Ga-terminated GaAs favors the formation of an intermixed layer with Fe. The Schottky barrier heights are particularly sensitive to the abruptness of the interface. A significant density of states in the semiconducting gap arises from metal interface states. These spin-dependent interface states lead to a significant minority spin polarization of the density of states at the Fermi level that persists well into the semiconductor, providing a channel for the tunneling of minority spins through the Schottky barrier. These interface-induced gap states and their dependence on atomic structure at the interface are discussed in connection with potential spin-injection applications.Comment: 9 pages, 9 figures, to appear in PR

    Innovations of the Beginning of the Sixth Millennium BC in the Northern Pontic Steppe

    Get PDF
    This study focuses on the pottery-bearing ("Neolithic") sites of the northern Azov Sea region. The vessels ornamented with comb imprints appeared there in the sixth millennium BC. In the light of a recent re-dating of the Rakushechny Yar site sequence, the sites of the northern Azov region appeared to be the earliest evidence for this innovation. The innovation in the ceramic assemblage is accompanied by an innovative lithic tool set. The latter included macro-blades and fan-shaped end-scrapers, which were previously unknown in the studied region. Their reanalysis (including new field work at the single-layer site of Chapaevka) helped formulate a hypothesis of maritime transmission of comb-ornamented ceramics in the Black and Azov Sea. This hypothesis will stimulate further discussions regarding the ways of Neolithization in Eastern Europe. It underlines the connections between Balkan "classic"Neolithic and pottery-bearing sites of the Ukrainian Steppe. The impressed ware from Makri and other mainland Greek sites is treated as the closest analogy to the finds of the northern Azov Sea region

    Optical transitions and nature of Stokes shift in spherical CdS quantum dots

    Full text link
    We study the structure of the energy spectra along with the character of the states participating in optical transitions in colloidal CdS quantum dots (QDs) using the {\sl ab initio} accuracy charge patching method combined with the %pseudopotential based folded spectrum calculations of electronic structure of thousand-atom nanostructures. In particular, attention is paid to the nature of the large resonant Stokes shift observed in CdS quantum dots. We find that the top of the valence band state is bright, in contrast with the results of numerous {\bf k\cdotp} calculations, and determine the limits of applicability of the {\bf k\cdotp} approach. The calculated electron-hole exchange splitting suggests the spin-forbidden valence state may explain the nature of the ``dark exciton'' in CdS quantum dots.Comment: 5 pages, 4 figure

    The Birth of a Galaxy - III. Propelling reionisation with the faintest galaxies

    Full text link
    Starlight from galaxies plays a pivotal role throughout the process of cosmic reionisation. We present the statistics of dwarf galaxy properties at z > 7 in haloes with masses up to 10^9 solar masses, using a cosmological radiation hydrodynamics simulation that follows their buildup starting with their Population III progenitors. We find that metal-enriched star formation is not restricted to atomic cooling (Tvir104T_{\rm vir} \ge 10^4 K) haloes, but can occur in haloes down to masses ~10^6 solar masses, especially in neutral regions. Even though these smallest galaxies only host up to 10^4 solar masses of stars, they provide nearly 30 per cent of the ionising photon budget. We find that the galaxy luminosity function flattens above M_UV ~ -12 with a number density that is unchanged at z < 10. The fraction of ionising radiation escaping into the intergalactic medium is inversely dependent on halo mass, decreasing from 50 to 5 per cent in the mass range logM/M=7.08.5\log M/M_\odot = 7.0-8.5. Using our galaxy statistics in a semi-analytic reionisation model, we find a Thomson scattering optical depth consistent with the latest Planck results, while still being consistent with the UV emissivity constraints provided by Lyα\alpha forest observations at z = 4-6.Comment: 21 pages, 15 figures, 4 tables. Accepted in MNRA

    Green luminescence in Mg-doped GaN

    Get PDF
    A majority of the point defects in GaN that are responsible for broad photoluminescence (PL) bands remain unidentified. One of them is the green luminescence band (GL2) having a maximum at 2.35 eV which was observed previously in undoped GaN grown by molecular-beam epitaxy in Ga-rich conditions. The same PL band was observed in Mg-doped GaN, also grown in very Ga-rich conditions. The unique properties of the GL2 band allowed us to reliably identify it in different samples. The best candidate for the defect which causes the GL2 band is a nitrogen vacancy (VN). We propose that transitions of electrons from the conduction band to the +/2+ transition level of the VN defect are responsible for the GL2 band in high-resistivity undoped and Mg-doped GaN

    Green luminescence in Mg-doped GaN

    Get PDF
    A majority of the point defects in GaN that are responsible for broad photoluminescence (PL) bands remain unidentified. One of them is the green luminescence band (GL2) having a maximum at 2.35 eV which was observed previously in undoped GaN grown by molecular-beam epitaxy in Ga-rich conditions. The same PL band was observed in Mg-doped GaN, also grown in very Ga-rich conditions. The unique properties of the GL2 band allowed us to reliably identify it in different samples. The best candidate for the defect which causes the GL2 band is a nitrogen vacancy (VN). We propose that transitions of electrons from the conduction band to the +/2+ transition level of the VN defect are responsible for the GL2 band in high-resistivity undoped and Mg-doped GaN

    Impurity complexes and conductivity of Ga-doped ZnO

    Get PDF
    Using hybrid functional theory together with experimental measurements, we investigate the influence of gallium impurities and their complexes on electrical properties of ZnO. In contrast to the behavior of isolated Ga impurities and native defects, the calculated formation energies of Ga complexes are consistent with our experimental data. We show that for high levels of Ga doping the acceptor behavior of GaZn-VZn and GaZn-Oi complexes explains the conductivity measurements and compensation levels in ZnO. The computed binding energies of these complexes are also consistent with the binding energies obtained from the measurements of the temperature dependence of carrier mobility. Our results show that the formation of defect complexes, often overlooked by theory, can be indispensable in capturing the defect physics
    corecore